Cosets and The orders of subgroups

Even though we can't define the quotient group \mathcal{G}'_H for every subgroup $H \leq G_r$, we showed that the left cosets still form a parition of G. For |G| finite, this gives an easy proof of Lagrange's Theorem:

Thm: (Lagrange's theorem) If G is a finite group and $H \leq G$, [H] divides [G], and $\frac{|G|}{|H|}$ is the number of left cosets of H in G.

Pf: let
$$g \in G$$
, and consider the coset $g H$.
Define the function $f:H \rightarrow g H$ by $h \mapsto g h$.
 f is surjective by definition of $g H$, and if $g h = g h'$,
then $h = h'$, so f is also injective. Thus, $|H| = |g H|$, so
all cosets have the course H of elements

Since they partition Gi, |G|= |H| d, where d = # of cosets. D

In the case of infinite groups, it's possible for a subgroup to have a finite # of cosets:

e.g. nR < R has n left cosets.

Def: If G is any group (possibly infinite) and $H \leq G$, the number of left cosets of H in G is called the index of H in G and is denoted $[G_1:H]$.

 $[E_X: H=\{(a, 0) \mid a \in \mathbb{Z}\} \leq \mathbb{Z} \times \mathbb{Z}_{3\mathbb{Z}} = G$

The cosets are
$$\mathbb{Z} \times \{0\}$$
, $\mathbb{Z} \times \{1\}$, $\mathbb{Z} \times \{2\}$, so $[G:H] = 3$.
 $(0,0) + H$ $(0,1) + H$ $(0,2) + H$
 $G_{1/H} \cong \mathbb{Z}/3\mathbb{Z}$.

Ex: let $H \leq G$ be a subgroup of index 2. Thus for any $g \notin H$, $\{gH, IH\}$ are the left cosets of H. Similarly, the right cosets are Hg and Hl. Thus, $\forall g \in G = H$, gH = Hg. If $g \in H$, gH = IH = H = HI = Hg. $\Rightarrow gH = Hg \forall g \in G \Rightarrow H \leq G$. That is, every subgroup of index 2 is normal.

Note: The index is also equal to the # of right cosets. So while every subgroup has the same # of left and right cosets (Hw) they are only equal if the subgroup is normal.

The converse to Lagrange's Thm is not true. i.e. it's not always true that G will have a subgroup of every order that divides [G], but we can give a partial converse now (we'll see another in the next chapter).

<u>Cauchy's Theorem</u>: If G is a finite abelian group and p is a prime dividing [G], thun G contains an element of order p (and thus a subgroup of order p).

Pf: We will prove this by induction on the order of G. Assume it's true for every group whose order is less than [G].

Since |G| > 1, 7 x & G s.t. x + 1. If |G|=p trun |x|-p by Lagrange's Theorem, and we've done. Thus, assume |G| > p.

Suppose p divides |x| and write |x| = ph. Then $|x^n| = \frac{ph}{(ph, n)} = p$, and we've done.

Thus, assume p doesn't divide |x|. Let $N = \langle x \rangle$. Gris abelian, so $N \stackrel{q}{=} G$. By Lagrange's Thm $|G/N| = \frac{|G|}{|N|}$.

Since $N \neq l$, |G/N| < |G|. p doesn't divide |N|, so p divides |G/N|. By induction, G/N contains an element yN of order p.

$$yN \neq IN$$
, so $y \notin N$, but $y^{P} \in N$. Thus $\langle y^{P} \rangle \neq \langle y \rangle$.
 $\Rightarrow |y^{P}| < |y| \Rightarrow |y^{P}| = \frac{|y|}{(|y|,P)}$ But $(|y|,P) \neq I$, so $P||y|$. Thus,

we are done by an argument above. D

The idea here is that we could use the fact that G has a normal subgpto deduce something about G from G/N. This is a common approach in algebra. An obvious obstruction to this is if G has no normal subgps other that I and G. This is called a <u>simple group</u>.